V.¹ **Organic Syntheses by Means of Metal Complexes.** Reactions of Olefins, Carbon Tetrachloride, and Carbon Monoxide Catalyzed by Metal Carbonyls²

Tosaku Susuki and Jiro Tsuji

Basic Research Laboratory, Toray Industries, Inc., Kamakura, Japan Received January 26, 1970

Dicobalt octacarbonyl, cyclopentadienyliron dicarbonyl dimer, and cyclopentadienylmolybdenum tricarbonyl dimer are effective catalysts for the addition reaction of carbon tetrachloride and carbon monoxide to olefins to form 2-alkyl-4,4,4-trichlorobutyryl chloride. These dinuclear metal carbonyls are also active catalysts for the addition of carbon tetrachloride to olefins to form 1,1,1,3-tetrachloroalkane. The mechanism of these dinuclear metal carbonyl catalyzed reactions is discussed.

Metal carbonyls catalyze various reactions of olefins, among which carbonylations are the most important. In carbonylations, it is generally believed that an insertion of olefins into a metal σ bond to form an alkyl complex is followed by carbon monoxide insertion to form an acyl complex. Finally the acyl complex affords carbonyl compounds. This mechanism can be expressed by Scheme I.

In this mechanism, formation of σ -bonded complex is essential as a starting point. Dinuclear metal carbonyls such as $Co_2(CO)_8$ (I) react with some simple molecules with splitting of the metal-metal bond to form σ -bonded complexes. For example, in the I-catalyzed oxo reaction or hydrosilation,³ hydrogen or a silane reacts with I to form the following σ -bonded complexes (reactions 1 and 2), which then undergo olefin insertion.

$$\stackrel{\text{H}_2}{\longrightarrow} 2\text{HCo(CO)}_4 \tag{1}$$

$$\operatorname{Co}_{2}(\operatorname{CO})_{8} \xrightarrow{\mathrm{H-SiR}_{3}} \mathrm{HCo}(\operatorname{CO})_{4} + \mathrm{R}_{3} \mathrm{SiCo}(\operatorname{CO})_{4}$$
(2)

$$\longrightarrow \text{CCl}_3\text{Co}(\text{CO})_4 + \text{ClCo}(\text{CO})_4 \qquad (3)$$

The reaction of CCl_4 with I to form $Co_8(CO)_9CCl$ is known,^{4,5} and the intermediate formation of the species $CCl_3Co(CO)_4$ and $ClCo(CO)_4$ has been assumed (reaction 3). Once the σ -bonded complex is formed from CCl_4 , olefin insertion into the σ bond to form an alkyl complex is expected. Based on this assumption, we attempted to apply this reaction of dinuclear metal carbonyls to a new catalytic carbonylation reaction of olefins.

The addition reaction of CCl₄ to olefins catalyzed by mononuclear metal carbonyls, such as Fe(CO)₅, Mo- $(CO)_6$, or $Cr(CO)_6$, has been reported. Thus $Fe(CO)_5$ catalyzed addition of CCl₄ to ethylene gave a mixture of telomer homologs, $CCl_3(CH_2CH_2)_nCl$ (n = 1, 2, 3, 4, and higher), in 70% conversion.⁶ From the above consideration, it is expected that dinuclear metal carbonyls should be better catalysts for the CCl₄ addition reactions. The dinuclear metal carbonyls are indeed very active catalysts for the addition reaction of CCl₄ and CO to olefins, as the catalyst I, $[C_5H_5Fe(CO)_2]_2$ (II), and $[C_5H_5Mo(CO)_3]_2$ (III) were found most effective.

The reaction of ethylene, carbon monoxide, and CCl₄ in methanol to give $CCl_3(CH_2CH_2)_nCO_2CH_3$ (n = 1-3)in 40% conversion using di-t-butyl peroxide as a catalyst at 1000 atm has been reported.⁷ Different from the reactions catalyzed by butyl peroxide and Fe- $(CO)_5$, the reactions catalyzed by the dinuclear metal carbonyls are clean and selective without giving a mixture of homologs. The catalytic activity of metal carbonyls coordinated with a cyclopentadienyl group has scarcely been reported, although it was recently reported that II is an active catalyst for the oxo reaction.⁸ Further usefulness of the cyclopentadienylcoordinated metal carbonyls was found in the present studies.

Results and Discussion

The reaction of CCl₄ with olefins in the presence of a catalytic amount of I was first investigated. Addition

(4) R. Ercoli, E. Santambrogo, and G. T. Casagrands, Chim. Ind. (Milan). 44, 1344 (1962).

⁽¹⁾ Part IV: T. Kajimoto and J. Tsuji, Bull. Chem. Soc., Jap., 42, 827 (1969).

⁽²⁾ Preliminary communication: T. Susuki and J. Tsuji, Tetrahedron. Lett., 913 (1968). (3) J. F. Harrod and A. J. Chalk, J. Amer. Chem. Soc., 87, 1133 (1965).

⁽⁵⁾ G. Bor, L. Marko, and B. Marko, Chem. Ber., 95, 333 (1962).

^{(6) (}a) A. N. Nesmeyanov, R. Kh. Freidlina, E. C. Chukovskaya, R. G. Petrova, and A. B. Belyavsky, *Tetrahedron*, **17**, 61 (1962). (b) E. T. Chukovskaya, A. A. Kamyshova, and R. Kh. Freidlina, Dokl. Akad. Nauk SSSR, 164, 602 (1965), and the references cited therein.

⁽⁷⁾ R. E. Foster, A. W. Larchar, R. D. Lipscomb, and B. C. MuKusick, J. Amer. Chem. Soc., 78, 5606 (1956).
 (8) J. Tsuji and Y. Mori, Bull. Chem. Soc. Jap., 42, 527 (1969).

REACTION OF UA	RBON LETRACHLORIDE V	VITH OLEFINS IN THE PI	RESENCE OF $[OO(OO)_{4]_{2}}(1)^{*}$
	Read	tion —	
Olefins	Temp, °C	Time, hr	Products (g)
Ethylene ^b (100 atm)	160	17	$CCl_{3}CH_{2}CH_{2}Cl$ (1.0)
-			$CCl_{3}(CH_{2})_{4}Cl$ (3.5)
Propylene (12 g)	150	15	$CCl_{3}CH_{2}CH(CH_{3})Cl$ (4.2)
1-Buene (12 g)	160	16	$CCl_{3}CH_{2}CH(C_{2}H_{5})Cl$ (8.0)
1-Butene (6 \mathbf{g})	160	1	$CCl_{3}CH_{2}CH(C_{2}H_{5})Cl$ (4.3)
1-Hexene $(7 g)$	180	16	$CCl_3CH_2CH(n-C_4H_9)Cl (8.0)$
1-Hexene $(14 g)$	20	48	$CCl_3CH_2CH(n-C_4H_9)Cl (1.5)$
1-Octene (14 g)	160	15	$CCl_{3}CH_{2}CH(n-C_{6}H_{13})Cl$ (6.5)
cis-2-Butene (6 g)	160	16	$CCl_{3}CH(CH_{3})CH(CH_{3})Cl$ (3.0)
trans-2-Butene (6 g)	160	16	$CCl_{3}CH(CH_{3})CH(CH_{3})Cl$ (2.7)
2-Hexene $(7 g)$	160	16	$CCl_{3}CH(C_{3}H_{7})CH(CH_{3})Cl$
			$\operatorname{CCl}_{3}\operatorname{CH}(\operatorname{CH}_{3})\operatorname{CH}(\operatorname{C}_{3}\operatorname{H}_{7})\operatorname{Cl} \int_{0}^{0} (0,0)$
Cyclohexene (16 g)	150	15	No sole product

TABLE I

Reaction of Carbon Tetrachloride with Olefins in the Presence of $[Co(CO)_4]_2$ (I)^a

^a The reactions were carried out with 40 ml of CCl₄ and 1 g of the catalyst in a glass vessel placed in an autoclave (300 ml). ^b CCl₄ (20 ml) was used in a 100-ml autoclave.

of CCl₄ to various olefins was observed at about 160° and 1,1,1,3-tetrachloroalkanes were obtained. The results are shown in Table I. Ethylene is somewhat unusual and a mixture of 1:1 and 1:2 adducts was obtained showing that a successive ethylene insertion is possible. On the other hand, only 1:1 adduct was obtained with other olefins. Conversion was lower with internal olefins than terminal olefins. For 1 olefins, there are two possible orientations of the olefin additions. Actually, however, only products formed by addition of CCl₃ to the terminal carbon were obtained.

$$RCH = CH_2 + CCl_4 \longrightarrow RCHCH_2CCl_3$$

For example, only 1,1,1,3-tetrachloropentane was obtained selectively from 1-butene. This is the same result as obtained in the radical-initiated addition reaction of CCl₄ to olefins. It is clearly different from other I-catalyzed reactions such as the oxo reaction, in which two products derived from different additions to double bond are obtained in various ratios. As in the oxo reaction, only catalytic amounts of I are necessary. After the reaction was complete, CoCl₂ was recovered from the reaction mixture. The reaction can be applied to simple olefins, but not to butadiene. Acrylonitrile, methyl acrylate, and styrene polymerized with this catalyst.

The reaction under CO pressure was then investigated with the expectation that the CO insertion would follow olefin insertion to give carbonylated products. With 1 olefin, CCl₄, and CO, the reaction proceeded smoothly to give 2-alkyl-4,4,4-trichlorobutyryl chloride. The formation of butyryl chlorides is competitive with simple addition of CCl₄ to olefins to form 1,1,1,3tetrachloroalkanes.

$$\begin{array}{c} \text{RCH} = \text{CH}_2 + \text{CCl}_4 + \text{CO} \longrightarrow \\ \text{Cl}_3 \text{CCH}_2 \text{CHCOCl} + \text{Cl}_3 \text{CCH}_2 \text{CHCl} \\ \downarrow \\ \text{R} & \text{R} \end{array}$$

A higher CO pressure and a lower reaction temperature tended to increase the ratio of the carbonylation to the simple addition. It should be noted that a simple CO insertion without olefin insertion to form trichloroacetyl chloride was not observed. For this carbonylation reaction, mononuclear metal carbonyls, such as $Fe(CO)_5$ or $Mo(CO)_6$, were almost inactive. I is active, but higher activity was observed with dinuclear metal carbonyls derived from iron and molybdenum carbonyls. Mononuclear molybdenum and iron carbonyls can be converted into the dinuclear ones by coordination of a cyclopentadienyl group as a ligand.⁹

 $2Mo(CO)_{\delta} + dicyclopentadiene \longrightarrow [C_{\delta}H_{\delta}Mo(CO)_{\delta}]_{2} + 6CO + H_{2}$

With these dimeric carbonyls, high yields of 2-alkyl-4,4,4-trichlorobutyryl chlorides were obtained, the reaction proceeding even at 50° with the iron catalyst. Results are shown in Table II. Another typical mononuclear carbonyl is $Ni(CO)_4$ from which $[C_5H_5 Ni(CO)]_2$ can be derived; this, however, was found to be completely inactive. The catalytic action of I is somewhat different from that of the iron and molybdenum catalysts. For example, ethylene does not give the carbonylated product with I, but high yields of the carbonylated products were obtained with the other catalysts. Also, hydroquinone showed some inhibitory action with I and a little with III. There was no effect with II. The reaction carried out in ethanol produced corresponding esters in nearly the same yields as in the absence of the solvent. Thus, this carbonylation reaction is useful for the synthesis of 2-alkyl-4,4,4-trichlorocarboxylic acids from which various compounds can be derived by diplacement or elimination of the chlorines.

We propose the following mechanism for this reaction. The first step is the formation of the trichloromethyl complex by reaction of the dinuclear carbonyls with CCl₄ (reaction 4). The insertion of olefin into the metal-trichloromethyl bond forms the 1-alkyl-3,3,3trichloropropyl complex (reaction 5). Reaction of the propyl complex with another molecule of CCl₄ gives the 1,1,1,3-tetrachloroalkane with regeneration of the trichloromethyl complex (reaction 6). CO insertion into the propyl complex gives the acyl complex (reaction 7), which then reacts with CCl₄ to form 2-alkyl-4,4,4-trichlorobutyryl chloride with regeneration of the trichloromethyl complex (reaction 8).

(9) R. B. King, "Organometallic Syntheses," Vol. 1, Academic Press New York, N.Y., 1965, pp 109, 114.

			TABLE II		
REACTION OF OLEFINS, C	Cl ₄ and CO	CATALYZED BY	$[Co(CO)_4]_2$ (I)	, $[C_5H_5Fe(CO)]$	$[2]_{2}$ (II), and $[C_{5}H_{5}Mo(CO)_{3}]_{2}$ (III) ^a
	Catalyst,	CO pressure,	React	ion	
	l g	atin 170	Temp, *C	11me, nr	
Ethylene (30 atm)	11	170	119	15	$CCI_3CH_2CH_2COCI (3.3)$
Ethylene (30 atm)	111	170	120	15	$COl_3 CH_2 CH_2 COCI (15.4)$
Ethylene (30 atm)	T	170	130	15	$COI_{3}OH_{2}OH_{2}OI_{2}(0,3)$
\mathbf{D} \mathbf{b} \mathbf{b} (10)		000	F 0	14	$\frac{OOI_3(OH_2)_4OI_3(0,8)}{OOI_3(OH_2)_4OI_3(0,8)}$
Propylene (12 g)	11	200	03	14	$OOI_3OH_2OH(OH_3)OOOI(12)$
Bronsland (10 m)	тт	200	110	15	$OCI_{3}OH_{2}OH(OH_{3})OI(3,0)$
Propylene (12 g)	11	200	118	10	$CC_{13}CH_{2}CH(CH_{3})CUCI(12)$
$\mathbf{D}_{\mathbf{r}}$	TT	000	60	15	$OCI_{3}OH_{2}OH(OH_{3})OI(8,0)$
Propylene ^c (12 g)	11	200	08	15	$CCl_{3}CH_{2}CH_{1}CH_{3}CUUU_{2}H_{5}(11.2)$
$\mathbf{D}_{\mathbf{r}}$	тт	200	67	15	$CCl_{3}CH_{2}CH_{1}CH_{3}Cl_{1}(2.7)$
Propylene ^u (12 g)	11	200	07	15	$CCl_{3}CH_{2}CH(CH_{3})CUCI (13)$
\mathbf{D} momentum of (19, m)	TTT	200	50	15	\mathbf{N}_{one}
Propylene (12 g)	111	200	02	10	
Fropylene (12 g)	111	00	90	10	$CC_1 CH CH (CH_3) COOl (6.8)$
$\mathbf{D}_{\mathbf{r}}$	TTT	900	05	2	$CCI_{3}CH_{2}CH(CH_{3})CI(15)$
Propylene (12 g)	111	200	90	ð	$CCI_3CH_2CH(CH_3)CUCI(10)$
Dremailan et (10 m)	TTT	150	109	4	$CCI_{3}CH_{2}CH(CH_{3})CI(9,0)$
Fropylene [®] (12 g)	111	150	103	Ŧ	$CC_{13}CH_{2}CH_{13}CUC_{13}CUC_{11}(1,1)$
$\mathbf{P}_{romerlows}$ (10 m)	т	200	09	15	$CCI_{3}CH_{2}CH_{1}CH_{3}CI_{1}(1,3)$
r topylene (10 g)	T	200	00	10	$CC1_{3}CH_{2}CH_{1}CH_{3}CUCI_{3}(0,0)$
Propulance (10 g)	т	200	125	15	$CCLCH_CH(CH_1)COCCH_(0,0)$
r topytene (to g)	T	200	120	10	$CC_{1}CH_{1}CH_{1}CH_{1}CH_{2}CH_{$
Pronylene $(10 g)$	' т	50	128	15	$CCl_{3}CH_{2}CH(CH_{3})CI(0,4)$
Topytone (To g)	T	00	120	10	$CCl_{s}CH_{s}CH(CH_{s})CU(2,0)$
Propylene/ (10α)	т	200	120	15	CCl ₂ CH ₂ CH(CH ₂)Cl (2.0)
	-		1	10	CCl ₂ CH ₂ CH(CH ₂)Cl (trace
1-Butene $(12 g)$	п	200	90	15	$CCl_{3}CH_{3}CH(C_{3}H_{5})COCl_{2}(9,8)$
					$CCl_{3}CH_{2}CH(C_{2}H_{5})Cl(4,5)$
1-Butene (12 g)	111	200	93	15	$CCl_3CH_2CH(C_3H_5)COCl (6,5)$
					$CCl_{3}CH_{2}CH(C_{2}H_{5})Cl(3.8)$
1-Butene (12 g)	I	200	160	15	$CCl_{3}CH_{2}CH(C_{2}H_{5})COCl(7.5)$
					$CCl_3CH_2CH(C_2H_5)Cl(7.0)$
1-Hexene (4 g)	III	200	91	15	$CCl_3CH_2CH(n-C_4H_9)COCl (3.8)$
					$CCl_3CH_2CH(n-C_4H_9)Cl$ (2.5)
1-Hexene $(7 g)$	I	180	160	15	$CCl_3CH_2CH(n-C_4H_9)COCl$ (4.4)
					$CCl_3CH_2CH(n-C_4H_9)Cl (8.5)$
1-Octene (7 g)	II	200	118	15	$CCl_{3}CH_{2}CH(n-C_{6}H_{13})COCI$ (7.6)
					$CCl_{3}CH_{2}CH(n-C_{6}H_{13})Cl (3.5)$
1-Octene $(7 g)$	I	200	130	15	$CCl_3CH_2CH(n-C_6H_{13})COCl (6.5)$
					$CCl_3CH_2CH(n-C_6H_{13})Cl (6.0)$
trans-2-Butene (9 g)	III	200	120	15	$CCl_{3}CH(CH_{3})CH(CH_{3})COCl (1.6)$
	_				$CCl_{3}CH(CH_{3})CH(CH_{3})Cl (1.8)$
trans-2-Butene (6 g)	I	170	160	15	$CCl_3CH(CH_3)CH(CH_3)Cl (2,0)$
cis-2-Butene (12 g)	I	200	120	15	$CCl_{3}CH(CH_{3})CH(CH_{3})COCl (1.7)$
	-				$CCl_{3}CH(CH_{3})CH(CH_{3})Cl (4.0)$
Isobutene $(9 g)$	I	160	160	15	$CCl_3CH_2C(CH_3)_2Cl (2.0)$
1,3-Butadiene (12 g)	11	200	74	15 15	INONE
1,3-Butadiene $(12 g)$	111	200	120	15	
1,3-Butadiene $(12 g)$	I	200	120	15	$UUI_3UH_2UH=UHUH_2UUUI(0.6)$

^a The reactions were carried out with 40 ml of CCl₄ in a glass vessel. ^b Amount of the acid chlorides was calculated from the weight of isolated acid amide. ^c The mixture of 20 ml of CCl₄ and 20 ml of ethanol was used. ^d Hydroquinone (1.0 g) was added. ^c Hydroquinone (0.86 g) was added. ^f Hydroquinone (1.27 g) was added.

			r	ROPERTL	es and	ANALIS	ses of 1,	,1,1,0-11	ETRACH	LOROALI	ANES	
CClaCH- R ²	-CHCl R1	Registry	Bp, °C	(Calcd, %	;	Calcd]	Found, 9	%- <u> </u>	Found	
R1	\mathbb{R}^2	no.	(mm)	С	н	Cl	mol wt	С	H	Cl	mol wt	Nmr spectrum
CH₃	н	a	88-89 (53)	24.52	3.09	72.39	196	24.81	3.08	72.10	202.7	8.31 (d, 3), 6.79 (heptet, 2), 5.58 (m, 1)
C_2H_5	H	b	80-83 (18)	28.60	3.84	67.55	210	28.65	3.80	67.25	213	8.86 (t, 3), 8.03 (m, 2), 6.79 (octet, 2), 5.77 (m, 1)
\mathbf{CH}_{3}	CH₃	C	75 (15)	28.60	3.84	67.55		28.93	3.88	67.00		8.46 (t, 6), 6.85 (octet, 1), 5.10 (octet, 1)
n-C ₄ H ₉	н	d	119-120 (27)	35.33	5.08	59.59	238	35.59	5.11	59.30	243	9.05 (t, 3), 8.54 (m, 4), 8.14 (2), 6.81 (octet, 2), 5.72 (1)
<i>n</i> -C ₆ H ₁₃	H	е	73-75 (1)	40.64	6.06	53.31	266	41.19	6.12	531.0	279.9	9.08 (t, 3), 8.62 (m, 8), 8.14 (m, 2), 6.79 (octet, 2), 5.75 (m, 1)

TABLE III

PROPERTIES AND ANALYSES OF 1,1,1,3-TETRACHLOROALKANES

Ν	
ABLE	

Properties and Analyses of Amides and Esters Derived from 2-Alkyl-4,4,4-trichlorobutyryl

ŭ	JI3CH-CHCO3 R ² R ¹	м	P1 Registry	ROPERTIES AND ANAI Mp or bp	LYSES OF AM	IIDES AND Cal	b ESTERS	DERIVED 1	FROM 2-ALKY Caled	L-4,4,4-TRIC	HLOROBUT	твуь Сн d %	LORIDES	Found	
	Rı	\mathbb{R}^2	по.	(mm), °C	c	Η	N	Ũ	mol wt	c	Н	Z	CI	mol wt	Nmr spectrum
	Н	Η	ಣೆ	88-89	25.22	3.18	7.35	55.85	190.5	25.34	3.25	7.20	56.00	185	7.20, 7.03
	H	Η	q	110-115 (28)	32.83	4.13		48.46	219.5	33.21	4.18		48.10	216.3	
	CH;	Η	ల	103-104	29.37	3.94	6.85	52.02	204.4	29.52	3.97	6.71	52.23	205.7	
ور	CH3	Н	q	95-97 (12)	36.00	4.75		45.55	234	36.11	4.74		45.52	230	8.76 (t, 3), 8.71 (d, 3),
	1														7.6-6.4(m, 3), 5.93(2)
	C ₂ H ₅	Η	ల	97–98	32.98	4.61	6.41	48.68		33.02	4.66	6.31	48.65		8.96 (t, 3), 8.36 (2), 7.63-6.26 (m. 3)
്രം	C_2H_5	Η	धन	120-130 (25)	38.81	5.29		42.97	247.6	38.65	5.18		43.45	247.3	
	CH ₃	CH_3	500	56-57	32.98	4.61	6.41	48.68	219	33.14	4.66	6.55	48.54	219	8.84–8.50 (double d, 6),
	ł														7.75–6.64 (m, 2)
	$n-C_4H_9$	Η	ų	82-83	38.97	5.72	5.68	43.14		38.81	5.72	5.52	43.27		9.07 (t, 3), 8.57 (m, 6),
															7.28 (2), 6.55 (quartet, 1)
. 19	$n-C_4H_9$	Η		150 - 160 (25)	43.57	6.22		38 59	275.6	43 77	6 18		38 50	981 g	(+
	n-C ₆ H ₁₃	Н		87-88	43.73	6.61	5.10	38.79	275	43, 59	6.42	4.93	38.64	0.102	
ъ.	n-C ₆ H ₁₃	Η	. ч	127 - 130(5)	47.47	6.97		35.01	303.6	47.51	6.92		35.00	297	
ЭН ₃ (JH=CHCH	CONH2	I	94-97	33.29	3.72	6.47	49.13	216.5	33.77	3.95	5.89	48.89	202	6.89 (d, 2), 6.56 (d, 2),
															4.11 (quintet, 2)

Organic Syntheses by Means of Metal Complexes

COCL

There is a close similarity, such as selective formation of only one product, between the metal carbonyl catalyzed addition of CCl₄ and radical-initiated reactions,⁷ and hence there is a possibility that a trichloromethyl radical, rather than the trichloromethyl complex shown above, is an active species. However, little or no inhibition by hydroquinone in the metal carbonyl catalyzed addition reactions weakens this possibility. Certainly metal-coordinated species, namely, σ -metal complexes or coordinated radicals, play an important role.

Bamford and others have published a series of papers dealing with the metal carbonyl initiated radical polymerization of vinyl monomers in the presence of CCl₄; they proposed that the polymerizations are initiated by a radical formed by the reaction of CCl₄ with metal carbonyls.¹⁰ In their polymerization, only monomeric metal carbonyls are reported to be active; dinuclear carbonyls such as I are not active. Under the present reaction conditions, however, styrene, acrylonitrile, and methyl acrylate polymerized with I.

Experimental Section

The nmr spectra were determined on a Varian high-resolution spectrometer Model HR-100 in CCl₄ and are expressed in τ values. The molecular weights were determined in benzene using the Mechrolab vapor pressure osmometer. II and III were synthesized by the known method.⁹ The addition and carbonylation reactions were carried out in a stainless steel autoclave with shaking. Only typical examples are shown below.

Reaction of Ethylene and CCl₄ Catalyzed by I.--CCl₄ (20 ml) and I (1 g) were mixed in a glass vessel equipped with a gas inlet capillary, which was placed in a 100-ml autoclave. The ethylene was introduced (100 atm). The reaction was carried out at 160° for 17 hr. Crude reaction product was isolated by distillation at 60-120° (25 mm). Redistillation gave 1,1,1,3tetrachloropropane (1.0 g) and 1,1,1,5-tetrachloropentane (3.5 g).

Reaction of Propylene with CCl4 and CO Catalyzed by II.-The catalyst (1 g) and CCl₄ (40 ml) were mixed in the glass vessel, which was placed in a 300-ml autoclave. Propylene (20 ml) was introduced, followed by CO (200 atm), and the reaction was carried out at 53° for 14 hr. Ir spectrum of the crude reaction mixture showed the presence of acyl chloride at 1780 cm^{-1} . The reaction mixture was treated with concentrated NH₈ and extracted with CH₂Cl₂. Distillation of the extract gave 1,1,1,3-

(10) C. H. Bamford, G. C. Eastmond, and D. Writtle, J. Organometal. Chem., 17, 33 (1969), and the references cited therein.

tetrachlorobutane (3 g) at 86-88° (50 mm) and the residue solidified. The solid was recrystallized from a CCl₄-*n*-hexane mixture to give 4,4,4-trichloro-2-methylbutyramide (11 g). The amide (9 g) was dissolved in ethanolic HCl (40%, 50 ml) and refluxed for 3 hr. The solution was neutralized with ammonia and ethanol was evaporated. NH₄Cl was removed by filtration and the filtrate was subjected to distillation to give ethyl 4,4,4-trichloro-2-methylbutyrate at 95-97° (12 mm, 7.5 g).

Following derivatives of succinic acids were obtained by the hydrolysis of the trichloro esters formed from various olefins in concentrated H₂SO₄ and their melting points are shown (reported melting points): CH₃-, 111-112° (111°); C₂H₅-, 97° (98°); n-C₄H₉-, 80° (81°); n-C₆H₁₃-, 83° (83-84°).

Properties of the other reaction products and their derivatives are shown in Tables III and IV. **Registry No.**—Carbon tetrachloride, 56-23-5; carbon monoxide, 630-08-0; I, 10210-68-1; II, 12087-10-4; III, 12091-64-4; Table III—a, 13275-19-9; b, 19967-19-2; c, 20518-70-1; d, 13375-88-7; e, 1070-27-5; Table IV—a, 25236-71-9; b, 20101-80-8; c, 25236-73-1; d, 25236-74-2; e, 25236-75-3; f, 25236-76-4; g, 25236-77-5; h, 25236-78-6; i, 25236-79-7; j, 25236-80-0; k, 25236-81-1; l, 25236-82-2; ethylene, 74-85-1; propylene, 115-07-1; 1-butene, 106-98-9; 1-hexene, 592-41-6; 1-octene, 111-66-0; cis-2-butene, 590-18-1; trans-2-butene, 624-64-6; 2-hexene, 592-43-8; isobutene, 115-11-7; 1,3-butadiene, 106-99-0.

Zinc Reduction of γ Diketones

ERNEST WENKERT AND JAMES E. YODER

Department of Chemistry, Indiana University, Bloomington, Indiana 47401

Received February 23, 1970

The reduction of cyclic γ diketones with amalgamated zinc and hydrochloric acid has been studied. While the eight- and seven-ring systems yield 1,2-glycols, cyclohexane-1,4-dione fragments into acyclic hexane-2,5-dione. Reduction of the latter produces 2-hexanol. The ease of reduction of 1,2-diacylethylenes, -cyclopropanes, and -cyclobutane is compared. A seven-membered-ring analog of the quinone-hydroquinone reduction-oxidation system is described.

In continuation of a study of the Clemmensen reduction of diketones,¹ an investigation of the reaction of some cyclic γ diketones with amalgamated zinc in hydrochloric acid was undertaken. Diketones 1, 3, and 5 were chosen as six-, seven-, and eight-membered cyclic 1,4-dione representatives. The latter two substances were prepared by reduction of ketones $2a^2$ and 4,³ respectively, with zinc in acetic acid.

The Clemmensen products were expected to be pinacols, although the high strain of potential pinacolic product 6 from 1 suggested that the reduction of the six-membered cyclic diketone might take a different course from that of its homologs. The Clemmensen reduction of cyclohexane-1,4-dione (1) yielded acetonylacetone (7a), while the reduction of 2,6,6-trimethylcycloheptane-1,4-dione (3) gave the pinacol isomer pair 8 and that of 5 led to pinacol 9. Periodate oxidation of the diols reverted them to their diketonic precursors.

(2) E. J. Corey and H. J. Burke, J. Amer. Chem. Soc., 78, 174 (1956).
(3) R. C. Cookson, E. Crundwell, and J. Hudec, Chem. Ind. (London), 1003 (1958).

The fragmentation of 1 is reminiscent of the conversion of 1,4-dibromocyclohexane or 1,4-diiodocyclohexane into diallyl on zinc reduction⁴ and can be envisaged to involve the breakup of the reduction intermediate(s) (10, 11, or organozinc equivalents) into the dienol (12) of 7a.⁵

The formation of products besides 7a on reduction of 1 at elevated temperature led to a study of the Clemmensen reduction of acetonylacetone (7a). The sole isolable product of a reaction at room temperature was 2-hexanol, while the latter and a mixture of stereoisomeric 2,5-dimethyltetrahydrofurans (13a) were obtained from a reaction at slightly elevated temperature and proved to be the products of overreduction of cyclohexane-1,4-dione (1).⁶ In view of the possibility of the

⁽¹⁾ E. Wenkert and E. Kariv, Chem. Commun., 570 (1965).

⁽⁴⁾ C. A. Grob and W. Baumann, Helv. Chim. Acta, 38, 594 (1955).

^{(5) (}a) For a general discussion of heterolyses of this type, cf. C. A. Grob and P. W. Schiess, Angew. Chem., 79, 1 (1967). (b) For examples of homolyses of this type, cf. S. G. Cohen and R. Zand, J. Amer. Chem. Soc., 84, 586 (1962);
W. R. Roth and M. Martin, Tetrahedron Lett., 3865 (1967).

⁽⁶⁾ An independent study of the Clemmensen reduction of acetonylacetone and cyclohexane-1,4-dione under somewhat different conditions by J. G. St. C. Buchanan and B. R. Davis, *J. Chem. Soc. C*, 1840 (1967), has yielded related results. The authors are indebted to Dr. Davis for furnishing them information on this work prior to publication.